空调系统中的冷却塔应用手册

冷却塔是水与空气进行热交换的一种设备,它主要由风机、电机、填料、播水系统、塔身、水盘等组成,而进行热交换主要由在风机作用下比较低温空气与填料中的水进行热交换而降低水温。

在冷却塔的水气热交换中,水蒸发吸收潜热、湿空气升温吸收显热,是冷却水温度降 低的原因。据热平衡原理有:

众所周知:水的蒸发潜热是很大的(约 2427.9KJ/KG或 580Kcal/KG)而空气的比热则是很小的(0.2Kcal/kg℃),所以两种热量传递方式中,尤其是在气候温度比较高时,水的蒸发吸收的热量是引起冷却水降温的主要原因,而水、气之间的温差传递则是次要的,二者比值将随着气候条件而变化。通常,可设水蒸发吸热占总散热量的 75~80%,温差传热占 20~25%,并以此比值估计水塔的空气用量,但是实际上则不然,许多资料表明,实测数据亦证实,水蒸发吸收的热量随气候条件变化是很明显的,高可达 95%以上,低则小于 75%,了解冷却水塔的工作原理,就不难进行耗水量分析,如不考虑冷却水系统的漏损,则冷却水的消耗包括如下三部分:

冷却水的部分蒸发:部分水蒸发引起冷却水消耗是正常的、必须的,其消耗量不仅同冷却水本身的质量、流量、降温幅度(即热负荷)有关,同时还和入塔空气的温度(包括干球温度和湿球温度)和质量流量有关,为了向用户提供较可信的蒸发数据,在收集并分析有关数据的基础上,用试验方法验证,测得数据用如下公式计算的:e=G(X2-X1)/L×100%

下表列出收集的文献数据及的实测数据,不难看出文献值的平均值与实测值是 极其接近的。因此,对冷幅为 5℃(或 9°F)的标准型冷却水塔,按 0.83%冷却水量或 0.166% 冷却水量/1℃(或 0.088%冷却水量/1°F)估计水的蒸发损失是可信的、合理的。

冷却水的适量放空:为了保证冷却水的水质达到国家环保要求,允许冷却水有一定比例的放空量,以便补充更新。通常,此放空量控制在冷却水总量的 0.3%,亦可由用户据环保技术规范自行确定放空量。

如何采取积极的有 效的措施,来抑制肺亲和性菌的滋生和繁殖,综合国内外有关文献介绍的方法,大致如下:

C、降低冷却水营养化程度—即提供较大比例的补充水,有关资料指出:补充水量占总量的4%时,仍可测出有肺亲和性菌,不言而谕,从防止肺亲和性菌滋生而言,补充水应大于总量的4%。事实上,上述措施十分简便易行,但又是十分有效的,值得注意的是:要明确制度,付之实施,持之以恒。

飘水损失:这是一项非正常的水耗,也是衡量一台冷却水塔技术性能的指标之一,通常飘水损失应控制在冷却水总量的0.2%以下,它的大小和水塔的结构(是否采取除水设备)、风机的性能(包括风量、风压及叶片角度的调节以及它们之间的匹配等)、水泵的匹配以及水塔的安装质量等因素有关。

综上所述,冷却水塔处于正常运行时,补充水量为总水量的1.3% 。(设计时建议加大到2.5%,如考虑抑制肺亲和性菌时,则应大于4% 。)

现在采用的水吨为单位是国际上比较常用的单位。在计算选型上比较方便,另冷却塔在选型上应留有20%左右的余量。(简单计算方法)

在选用水泵时要在100吨水中留有10%的余量,在比较低的扬程时可选用管道泵,在扬程高时则宜选用IS 泵。

民用建筑空调冷却循环水系统的冷却塔,一般选用定型产品。目前市场上主要有逆流式冷却塔和横流式冷却塔两大类。逆流式冷却塔底部进风,冷却水与空气逆流接触,热交换率高,当循环水量和容积散质系数βxv相同,填料容积比横流式要少约15%~20%,因此逆流式冷却塔体积小,占地要少。因为水气逆向流动,故风阻较大。为减小进风口的阻力,往往需要提高进风口高度来减小进风速度,因而塔身较高。横流式冷却塔两侧进风,填料高度接近塔高,对气流无阻力,维护检修方便,高度比逆流塔低,结构稳定性好,有利于建筑物立面布置和外观要求。对于小流量的循环系统,优先选用逆流式冷却塔。对于大流量的循环系统,可以采用横流式冷却塔。

民用建筑对环境要求较高,因此冷却塔应布置在远离防噪声要求高的场所,并选用超低噪音型冷却塔。对于高级宾馆、别墅、医院、疗养院等建筑,对防噪声要求更高,此时还应进行特殊隔音处理,如设隔声帘、轻质隔音导向墙等。

噪声:冷却塔的噪声等级为低噪声型、超低噪声型。其噪声指标应符合国家标准GB/T7190.1-2008《玻璃纤维增强塑料冷却塔 第1部分:中小型玻璃纤维增强塑料冷却塔》

当水泵并联运行时,单台水泵的出水量将会衰减,随着并联工作的水泵台数的增加,单台水泵的出水量衰减得也越厉害。具体来说,在水泵型号相同情况下,以一台泵工作时的流量为Q=100m3/h计,当两台水泵并联运行时,总流量为Q=190m3/h,单台水泵的出水量衰减5%;当三台水泵并联运行时,总流量为Q=251m3/h,单台水泵的出水量衰减16%;当四台水泵并联运行时,总流量为Q=284m3/h,单台水泵的出水量衰减29%;当五台水泵并联运行时,总流量为Q=300m3/h,单台水泵的出水量衰减40%。这就是水泵并联工作的特性。

由于空调系统负荷随季节、昼夜、建筑功能和用户的变化相差较大,冷水机组工况也是千变万化。为了便于与冷水机组工况保持一致,在实际工程设计中,往往采取与冷水机组一一对应的形式配置循环水泵与冷却塔。由于存在着水泵并联工作的特性,当冷水机组工况变化时,系统循环流量以及每台循环水泵的流量,都会发生较大变化。为便于讨论,我们按照设置3 台冷水机组、3 台循环水泵、3台冷却塔的情况来进行讨论。假设总循环流量Q=1500m3/h,冷却循环水系统配水均匀,则在全工况下,每台循环水泵的流量均为500m3/h。当仅有一台冷水机组、一台循环水泵运行时,由于并联运行变成单台运行,流量增大了1.19倍,即流量由500m3/h 增大为595m3/h,也就是说,通过冷却塔的循环水量也同时增大了1.19倍,冷却水量增大为595m3/h。若按全工况时总循环流量的1/3,即500m3/h 的冷却水量选择冷却塔,很显然,所选冷却塔冷的冷却能力明显不足,造成冷却塔出水温度过高,最终引起冷水机组过热而停机。

因此,冷却塔不应因水量变化而降低冷却效能,既要满足全工况、水泵并联运行时循环水量,又要满足单台机组、单台水泵运行时增大了的循环水量。因此,我们选择冷却塔时,应以水泵单独运行时的流量来确定冷却塔的冷却水量,再以并联运行时单台水泵的出水量来校核冷却塔的配水系统,若循环水量小于冷却塔额定循环水量的80%,则说明冷却塔的配水系统已经不能满足目前的工况,应重新进行设计了。当冷水机组、冷却循环水泵为4 台或4 台以上时,由于水泵并联工作时单台水泵的出水量,均小于冷却塔额定循环水量的80%,造成冷却塔以及循环水系统不能正常工作。此时,可以在冷却塔进水管上适当设置流量控制阀,控制进水量在设备允许的范围内。

另。

空调系统中的冷却塔应用手册

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

滚动到顶部